
A Reinforcement Learning Approach to Generating
Test Cases for Web Applications

Xiaoning Chang† ‡ §∗, Zheheng Liang§ξ∗, Yifei Zhang†‡, Lei Cui§ξ, Zhenyue Long§ξ, Guoquan Wu† ‡ ¶, Yu Gao†‡,
Wei Chen†‡, Jun Wei†‡, Tao Huang†‡

†State Key Lab of Computer Sciences, Institute of Software, Chinese Academy of Sciences, Beijing, China
‡University of Chinese Academy of Sciences, Beijing, China

§Joint Laboratory on Cyberspace Security, China Southern Power Grid, Guangzhou, China
ξGuangdong Power Grid, Guangzhou, China

†{changxiaoning17, gqwu, gaoyu15, wchen, wj, tao}@otcaix.iscas.ac.cn
†zhangyifei.steven@gmail.com, §liangzheheng@qq.com, §cuilei@gdxx.csg.cn, §zhenyue@undecidable.org

Abstract—Web applications play an important role in modern
society. Quality assurance of web applications requires lots of
manual efforts. In this paper, we propose WebQT, an automatic
test case generator for web applications based on reinforcement
learning. Specifically, to increase testing efficiency, we design a
new reward model, which encourages the agent to mimic human
testers to interact with the web applications. To alleviate the
problem of state redundancy, we further propose a novel state
abstraction technique, which can identify different web pages
with the same functionality as the same state, and yields a
simplified state space. We evaluate WebQT on seven open-source
web applications. The experimental results show that WebQT
achieves 45.4% more code coverage along with higher efficiency
than the state-of-the-art technique. In addition, WebQT also
reveals 69 exceptions in 11 real-world web applications.

Index Terms—State exploration, Reinforcement learning, Soft-
ware testing

I. INTRODUCTION

Web applications have become drastically increased over
recent years. According to a recent survey [1], there are more
than 1 billion web applications in July 2022. On average, users
spend 7 hours per day online. It is important to develop web
applications with high quality. Manual/automated testing tech-
nique can be used for quality assurance of web applications.
However, manual testing is time-consuming. Moreover, there
is a large number of feasible action sequences for real-world
web applications. Manual test cases can only cover a small
portion of them. Therefore, an automatic test case generation
tool is becoming an urgent need to ensure the quality of web
applications.

One challenge in automatic test case generation for web
applications is that, some deep states can only be reached by
specific action sequences. For example, in web application
phoenix [2], only action sequence type username ⇀ type
password ⇀ click login ⇀ click Add-new-board ⇀ type
board-name ⇀ click Create-board ⇀ . . . ⇀ click edition
icon ⇀ click Tags can reach color edition state. However,
a web page may contain a large number of interactive UI

*Xiaoning Chang and Zheheng Liang contribute equally.
¶Guoquan Wu is the corresponding author.

elements [3]. It is difficult to generate valid action sequences
to reach diverse states. Any interruption when performing the
action sequence would fail to reach the target state. Existing
random-based approaches [4] randomly select actions and are
prone to generate ineffective action sequences. Model-based
approaches [5]–[7] first build a model for the target web
application and then traverse the model to generate action
sequences. Since it is hard to build a complete model, these
approaches only generate limited action sequences. Recently,
reinforcement learning approaches are widely adapted in auto-
matic software testing [8], [9]. They design reward functions
to train a policy to explore state space. However, their reward
functions are too simple to efficiently generate valid action
sequences. As a result, these approaches cannot discover new
deep states in the limited time.

Another challenge is that, web applications widely consist
of near-duplicate web pages [10]. Namely, web pages replicate
functionality but their content and structure are different.
These web pages should be identified as the same state.
Otherwise, redundant states would degrade the state space
exploration efficiency afterwards. However, a recent survey
[10] reveals that, existing approaches [4], [11], [12] that
directly compare the content or structure of web pages fail
to identify near-duplicate web pages as the same state. In
addition, computer vision-based approaches [9], [13] apply
deep learning to identify states. These approaches need a large
number of data to train the model, which require lots of effort.

In this paper, we propose WebQT, an automatic test case
generation tool for web applications based on reinforcement
learning. It relies on the reinforcement learning agent to select
an optimal action, and then perform it on the target web
application. Based on the result of execution, WebQT updates
the reward to the executed action. To be able to generate valid
action sequences effectively during the exploration, we design
a novel reward model to guide the agent to mimic human
testers to interact with web applications. After execution,
WebQT extracts state and valid actions from the web page.
To avoid state redundancy, our key observation to identify
states is that, similar elements on the page will serve the same

functionality. Based on this observation, we merge similar
elements to represent one unique functionality. Web pages with
similar functionalities are identified as the same state.

To demonstrate effectiveness of WebQT, we evaluate We-
bQT on real-world web applications from three aspects.
First, we compare WebQT and WebExplor [8] on a research
benchmark of 7 web applications. The experiment shows that
WebQT achieves 41.23% more branch coverage and 45.4%
more line coverage than WebExplor. Second, we implement
WebQTse (i.e., WebQT with state extraction proposed by
WebExplor) and WebQTr (i.e., WebQT with reward model
proposed by WebExplor). The comparison between WebQT,
WebQTse and WebQTr demonstrates WebQT outperforms
WebQTse and WebQTr in coverage and efficiency. Third, we
evaluate WebQT on 11 real-world web applications randomly
chosen from top 50 web applications [14] in the world. WebQT
discovers 69 exceptions in 11 web applications.

We summarize our main contributions as follows:
• We propose an automatic test case generation technique

for web applications based on reinforcement learning.
Specifically, a novel reward model is designed, which can
guide the reinforcement learning agent to mimic human
testers to efficiently explore the state space.

• To avoid state redundancy during the exploration, we
design a new state abstraction technique, which can
identify different web pages with the same functionality
as the same state.

• We implement our approach as WebQT and evaluate it
in real-world web applications. The experimental results
shows that WebQT can effectively and efficiently generate
test cases for web applications.

II. MOTIVATION

We regard automatic test case generation for web applica-
tions as a problem of state space exploration. That is said,
we aim to generate action sequences to reach diverse states
of the web application under test. In order to achieve this
goal, we need to address two technical challenges: (a) how
to represent and abstract the state for web applications to
avoid state redundancy problem and (b) how to design an
effective exploration strategy to reach more different states
giving limited time budget.

State Abstraction. Redundancy widely exists across differ-
ent pages in web applications [10]. Namely, web pages repli-
cate functionality but their content and structure are different.
For example, Figure 1 (a-c) shows three of web pages, where
web page (a-b) consists of two pieces of news respectively and
web page (c) consists of ten pieces of news (we only show
three of them). Although web pages are different from content
(i.e., web page (a) and (b)) and structure (i.e., web page (a)
and (c)), they are conceptually same and should be identified
as the same state. Otherwise, there would be redundant states,
degrading the efficiency of state space exploration.

However, existing works cannot address such a problem. For
example, WebExplor [8] directly utilizes URLs and HTML
documents of web pages to represent states. For web pages

(a-c) in Figure 1, whose URLs are different and HTML
documents vary a lot, WebExplor would identify them as
different states.

To overcome this challenge, our intuition is that, similar
elements on the page will serve for the same functionality,
and one of these similar elements can be utilized to represent
the functionality. After simplification, web pages that provide
similar functionality can be identified as the same state. In
this way, our approach is able to identify web pages with
various amount of similar functionalities as the same state. For
example, in Figure 1 (a), our approach identifies elements that
representing title of news as similar elements and utilizes one
of them (i.e., e3 in Figure 1 (d)) to represent their functionality
in the state. Similarly, we utilize element e4 to represent the
functionality of publisher of news, and element e5 to represent
the functionality of link of full coverage in the state. As a
result, no matter how many news there are, we extract the
same state, which is shown in Figure 1 (d). Note that, since
we do not take text into consideration, our approach is able
to identify web page with different content as the same state.

State space exploration. The aim of state space exploration
is two folds. On the one hand, the exploration strategy should
be able to randomly explore the web application to cover
diverse states. On the other hand, since some deep states can
only be reached by specific action sequences, the exploration
strategy should be able to generate valid action sequences
effectively. For example, for JPetStore web application [15],
in order to reach checkout state, the following action sequence
should be performed: type username ⇀ type password ⇀ click
login ⇀ type keyword ⇀ click search ⇀ click a dog ⇀ click
add to cart ⇀ click checkout. However, according to existing
work [3], a web page has 76 actions on average, making it hard
to efficiently generate valid action sequences. Any interruption
when performing the action sequence would fail to reach the
target state.

Existing state space exploration techniques cannot achieve
above two goals at the same time. For example, random-
based approaches [4], [16] are able to randomly explore the
state space but hard to generate valid action sequences. In
model-based testing, model can provide knowledge to generate
valid action sequences. However, existing approaches [5]–[7]
are hard to construct a complete model about the application
under test. Recently, researchers tend to adopt reinforcement
learning to test case generation for web applications [8], [9],
as such technique can keep a balance between exploration and
exploitation. However, the designed reward function, which is
the key to reinforcement learning, is too simple, and cannot
guide the action selection effectively when multiple actions
need to be performed sequentially to discover new states.
For example, in WebExplor [8], the reward function only
considers the number of each transition in a state, and is hard
to guide the generation of valid action sequences to expose
some deep states of the application under test. To increase
the effectiveness and efficiency of state space exploration, we
observe that, if the reinforcement learning agent can mimic
human interaction behavior with the application, it is able to

Massive Snowfall Buries Cars, Keeps Failing …

The Associated Press 3 hours ago

View Full Coverage

All the Apple Back Friday Deals You Can Get …

MacRumors 8 hours ago

View Full Coverage

(a)

Samsung’s 2022 Frame TV’s are Cheaper for …

Engadget 12 hours ago

View Full Coverage

Here Are The Best Black Friday Gaming Deals

Kotaku Yesterday

View Full Coverage

AMD Ryzen 9 5900X is 40 percent off on …

Notebookcheck.net 2 days ago

View Full Coverage

…

(c)

Elon Musk plays down influence of his tweets …

Financial Times 12 hours ago

View Full Coverage

Glass bottles excluded from deposit return …

BBC 17 hours ago

View Full Coverage

(b) (d)

div

p a

htmle1

e2

e3 e5
li
e4

Fig. 1. An example of web pages that have different content and structure but have same functionality. Web page (a) and (b) have different content, while
(a) and (c) have different structure. (d) is the state extracted from (a-c).

State
Extraction

web application
Reinforcement
Learning Agent

state

Action Extraction

ac
tio

ns3

test cases

Reward Model

4 5

action

rewardweb
page

State
Identification

21

actions

state

Fig. 2. The overview of WebQT

efficiently generate valid action sequence. For example, after
filling the text box, if the agent chooses to click the search
button next to the text box, it will reach the product detail
state quickly, rather than clicking the homepage tablet far
from the text box. Motivated by this observation, we design a
novel reward model, which not only encourages the action for
which the exposed state is worth exploring, but also the one for
which the generated action sequence is consistent with human
interaction behaviors. Under the guidance of the new reward
model, the reinforcement learning agent is able to effectively
generate action sequences to explore some deep states.

III. APPROACH

Figure 2 presents the overview of WebQT. Given a web
application, WebQT automatically generates sequences of ac-
tions (i.e., test cases) to test the web application. When the
target web application arrives at a web page, WebQT extracts
a state ¶ (Section III-A), and determines whether it is a
previously visited state · (Section III-B) to avoid redundant
states. Next, WebQT extracts valid actions from the web page
¸ (Section III-C). Then, the action previously performed on
the web application is evaluated by proposed reward model ¹
(Section III-D), estimating how much the action contributes to
state space exploration. Based on extracted states and actions
along with reward, the reinforcement learning agent is trained

to learn a policy π to select actions for state space exploration
º (Section III-E).

A. State Extraction

To explore the web application via reinforcement learning,
we need to define the state representation. As each web page
is represented by a HTML document, a straightforward way
is to leverage HTML document representation of the page.
However, adopting original HTML document as state directly
will suffer from the state redundancy problem as a large
number of pages will be generated during the exploration and
many of them only differ slightly in the document. To address
this limitation, we design a new state representation, defined
as follows.

Definition 1. A state s is a simplified HTML document tree
(V,E), where node e ∈ V represents a DOM element, and
(e1, e2) ∈ E represents the parent-child relationship, in which
e1 is the parent of e2.

In order to construct an abstract state from the original
HTML document, we first reduce the number of elements in
the document tree. We traverse the HTML document tree to
remove element e if it only has one child element. Namely,
consider the parent element and child element of e is ep and
ec, respectively. We treat ec as the child element of ep. The

div

li li

html

(a)

div

e1

e2

e5

e7 e9

button e4

li

div

li li

dive3

e6

e10 e11

html

(d)

e1

buttone4

div

li

e5

e7

v

(b)
e8

div

li li

htmle1

e5

e7 e9

button e4

li

div

li li

e6

e10 e11

(c)
e8

top

Fig. 3. An state extraction example, where (a) shows a simplified web page along with its HTML document tree, HTML document tree and extracted state
shown in (b-d), respectively.

intuition is that, if element e only has one child element ec,
XPath of element ec contains the information about element e.
In this way, the number of elements in the HTML document
is reduced.

Then we further merge the similar elements, assuming that
similar elements will serve for the same functionality. In a
web page, element e1 and e2 are deemed to be similar, if they
satisfy following conditions.

(1) They have similar structure. If XPath of
e1 and e2 is tag1[p1]/.../tagi[pi]/.../tagn[pn] and
tag1[p1]/.../tagi[p

′
i]/.../tagn[pn] respectively, then we

consider element e1 and e2 has similar structure with each
other, where pi 6= p′i. Technically, given an element e, we
take advantage of its XPath (by ignoring the index of its
ancestors in the path) to find all elements in the same layer
that have similar structures with e.

(2) They have similar style. The style similarity between
element e1 and e2 is defined as the distance between their
properties:

sim(e1, e2) =
∑

p∈props

dist(e1[p], e2[p]) · weight[p]
|props|

(1)

where dist(e1[p], e2[p]) is the edit distance between prop-
erty p of element e1 and e2. We take property src, href ,
type, className, height, width, positionX and positionY
into consideration, as shown in Table I. The first row presents
the way we calculate property distance: (i) For property src,
href and className, whose values are strings, we calculate
property distance by edit distance between them [17]. (ii) For
property height, width, positionX and positionY , whose
values are number, we calculate ratio of them as the property
distance. (iii) For property type, if property type of two
elements are same, the property distance is 1. Otherwise, the
property distance is zero. The second row of Table I shows
weights of property distances.

If the style similarity is greater than our predefined thresh-
old, we consider they have similar display styles.

Next, we perform the breath-first traversal on the simplified
tree to extract the state. For element e, if it has similar element
e′, we assume they serve for the same functionality, and add
one of them into state s to represent the functionality. Next,

we continue to search similar elements among child elements
of e and e′. If child element ec of element e is similar with
child element e′c of element e′, we add element ec into state
s, and treat element ec as the child element of e. Otherwise,
if there is no similar element among child elements of e and
e′, we add child element ec of element e and child element
e′c of element e′ as the child of element e into state s.

Example. In Figure 3, (a) and (b) shows a simplified web
page and its HTML document tree, respectively. To extract
the state for web page (a), we first simplify its HTML
document tree. Element e2 and e3 corresponds to dotted box
in (a), respectively. Since element e2 and e3 only has one
child element respectively, we remove them from the HTML
document tree and treat element e5 and e6 as the child element
of e1. After removal of element e2 and e3, the simplified
HTML document tree is shown in (c). Then, we traverse
the simplified HTML document tree to extract state s. Since
element e5 are e6 similar in both structure and style, which
corresponds to blue box in (a) respectively, we regard they
serve for the same functionality and add element e5 into state
s to represent their functionality in the state shown in (d). Next,
we continue to search similar elements among child elements
of e5 and e6. We find that, element e7 is similar with element
e8, e9, . . . , e11 in both structure and style, which corresponds
to green boxes in (a), respectively. Similarly, we add element
e7 into the state s to represent the functionality that elements
e7, e8, . . . , e11 serve for. In state s, element e7 is processed as
the child element of e5. For element e4, since it has no similar
element, we reserve it in the state. The extracted state from
web page (a) is shown in (d).

B. State Identification

To avoid duplicate states in the state space S, we determine
whether the extracted state s is a previously visited state. If
there is no state in the state space is same with state s, we add
state s into the state space. Otherwise, if state s′ ∈ S is same
with state s, we consider state s a previously visited state, and
do not add state si into the state space.

The basic strategy is to compare s with each state s′ ∈ S
one by one. However, to compare state s and s′, all elements
of state s needs to be compared with elements of state s′. It is

TABLE I
STYLE SIMILARITY COMPUTATION

property src href type className height weight positionX positionY

type str str specified str number number number number
weight 0.62 0.62 0.5 0.45 0.1 0.1 0.1 0.1

time-consuming to compare state s with all states in the state
space.

To address this problem, we observe that, given a web
application A, states of A share a number of elements. Based
on this observation, given states s0, s1, . . . , sn−1 ∈ S, we
build a state index tree, which consists of all elements and
edges of existing states s0, s1, . . . , si−1. We compare s with
stateIndexTree to determine whether there is a state s′ ∈ S
that is same with state s , i.e, whether s is newly visited.

We first label elements of state s. The label on an element
e will be used to identify the state that element e belongs to.
Then, we get state index tree of existing states. If no state
index tree has been built, we regard state s as the state index
tree, and there is no state that is the same with state s. If state
index tree stateIndexTree exists, we compare state s with
stateIndexTree to determine whether there is a same state
with state s as follows.

We initialize that the number of similar elements between
state s and each state s′ ∈ S to zero. Then, we perform pre-
order traversal on state s and state index tree stateIndexTree.
Suppose element u in state s is similar to element v in
stateIndexTree. According to the label of element v, element
v belongs to the set of states B, then the number of similar
elements between state s and s′ ∈ B is increased by one. We
also add label of state s on element v. Next, we continue to
find similar elements for each child elements of element u,
among the children of element v. Otherwise, if there is no
similar element with u in stateIndexTree, we add element
u and its descendants into stateIndexTree.

Based on the number of similar elements between state s
and state s′, we calculate state similarity stateSim between
state s and s′, which is defined as

stateSim(s, s′) =
#similarNum

min(#s,#s′)
(2)

where #similarNum is the number of similar elements
between state s and s′. #s and #s′ denotes the number of
elements of state s and s′, respectively. Note that, since we
compare states and state index tree in pre-order traversal, we
also take the structure of similar elements into consideration.

If similarity between state s and s′ is larger than our
predefined threshold between states threshold, we regard s
and s′ are the same state.

Example. Figure 4 (a) presents a state index tree built by
state sa and sb, where elements labeled by A (or B) belong
to state sa (or state sb). Figure 4 (b) shows the state sc. We
compare state sc with the state index tree to determine whether
state sc is a new state. We first label elements of state sc by

Ce8

C

C C

e9

e10 e11

AB

A AB

A A B

B

e1

e2 e3

e5

e4

e6 e7

(a) (b)

Fig. 4. An example of state identification. (a) presents a state index tree built
by state sa and sb, where elements labeled by A (or B) belong to state sa
(or state sb). (b) presents a state sc.

label C and initialize the number of similar elements between
state sa (and state sb) and sc to zero. Then, we compare root
element e8 of state sc with root element e1 of the state index
tree. Element e8 is similar with e1. Since element e1 belongs to
state sa, we increase the number of similar elements between
state sa and sc by 1. Since element e1 also belongs to state
sb, the number of similar elements between sb and sc is also
increased by 1. We continue to compare child elements of
e8 and e1. We find that, element e9 of state sc is similar
with element e3. Again, we increase the number of similar
elements between state sa (and state sb) and sc by 1. Next,
we compare child elements of e3 and e9. Element e10 is similar
with element e6, which belongs to state sa, while element e11
has no similar element among child elements of element e3.
Therefore, state sc has three similar elements with state sa
(i.e., e8, e9 and e10), and stateSim(sa, sc) = 3/min(5, 4) =
0.75. State sc has two similar elements with state sb (i.e., e8
and e9), and stateSim(sb, sc) = 2/min(4, 4) = 0.5.

C. Action Extraction

Definition 2. An action a in our approach is defined as a =
(ele, type[, param]), where ele is the interactable element that
a operates on, type is the type of a. In particular, if action
a is of type input, type form-fill or select, action a has input
value param.

Our current approach supports the action types: click, input,
select and form-fill, which are common actions in modern web
applications. In particular, type form-fill is specific to form
elements. More types of actions can be integrated into our
approach in the future.

We traverse the HTML document tree to check whether
element e is interactable. If yes, we generate an action a that
accesses to element e as follows:
• If tag of e matches our default configuration, we consider

element e is interactable and generate an action for it. Our
configuration is depicted in Table II. For example, if tag
of element e is a, we generate an action of type click

TABLE II
ACTION EXTRACTION

a button input textarea form fieldset select

click
√ √

input
√ √

form-fill
√ √

select
√

on element e. Specially, if tag of element e is form or
formset, we generate form-fill actions on it.

• If tag of e is input or textarea and e.type ∈
{radio, label, checkbox}, we consider element e is click-
able and generate an action of type click on element e.

• If tag and className of e matches user configuration,
we consider element e is interactable and generate an
action for element e. For example, if tag and className
of element e is div and submit respectively, we generate
a clickable action for it.

We provide values for actions of type input as follows
[4]. First, we obtain values from user configurations so that
our approach can reach certain states. For example, we need
users to provide username and password to login. Second, if
users do not provide custom values, we randomly generate
values. Specially, for element e accessed by action, if type
of e is email, we randomly generate an email value. In a
word, since input values can affect test procedure, we explore
normal and exceptional states by valid input values (i.e., user-
configured values) and invalid input values (i.e., randomly
generated values). As for form-fill action that accesses to the
form element f , we generate values for each action of type
input that accesses to element inside form f . As for the action
of type select on element e, whose tag is select, we process
the option tag inside the element e and randomly choose one
of available options as input value.

D. Reward Model

We adapt reinforcement learning algorithm Q-Learning [18]
to generate test cases to explore the state space. A key to
reinforcement learning is a reward model, which can optimize
policy π so that WebQT can reach diverse states efficiently.
When designing the reward model, we have the following two
aims: (a) the reward model should guide WebQT to reach
diverse states during the exploration. (b) the reward model
should encourage WebQT to interact with the application
like human, which can generate valid action sequences to
cover more deep states. To achieve the above two goals, we
manually explore web applications and obtain the following
observations, which constitute the basis of our reward model:
• Action locality. Human usually selects actions located in

the same area because these actions usually serve for the
same functionality of web applications. For example, in
order to search for a product, human fills the text box
and then click the search button next to it, rather than
clicking ”About us” link at the bottom of the web page
after entering keyword in the text box.

• Attention of action. Human is prone to perform actions
on elements that newly appear at the current state. For
example, a pop-up menu appears on the new state after
performing an action. Compared to other elements which
already exist in the previous state, human testers tend
to be more attracted by newly appeared elements, and
choose to click items on the pop-up menu.

• Frequency of action. In a state, if an action is less to
be chosen in the past compared to other actions, more
chance should be given to this action to reach diverse
states during the exploration.

• Proportion of unexecuted actions. If a state has more
actions that have not been executed after performing an
action, it is more worthy to encourage this action as new
states may be exposed when reaching such a state.

Reward indicator. Based on above observations, we define
reward indicators calculated after performing each action.
After execution of action ai, the action sequence is as =
〈a0, ..., ai〉, which makes state transition sequence s0

a1−→
s1

a2−→ s2 . . . si−1
ai−→ si, we define:

(1) rloc: this reward based on the locality of action ai.
Consider element ei−1 and ei, which are accessed by action
ai−1 and ai, respectively. We encourage the agent to select
action ai so that element ei is near to element ei−1 in the
page. If size of element ei−1 or ei is large, the spatial distance
between element ei−1 and ei is large, even if these two element
are next to each other. In order to ease the impact caused by
size of elements, we define rloc as:

rloc =

√
(h(ei−1) + w(ei−1)) ∗ (h(ei) + w(ei))

dist(ei−1, ei)
(3)

where h(e) and w(e) represents height and width of element
e, respectively. dist(ei−1, ei) is the Levenshtein distance [17]
between element ei−1 and ei.

(2) rattention: this reward based on the attention of action
ai. Human is more likely to perform an action on the mutant
element (e.g., newly added elements) that appears at state si
but does not exist at state si−1. Therefore, we define rattention
as:

rattention =

{
1/mutants(si) isMutant(ei)

0 otherwise. (4)

Namely, if element ei accessed by action ai is a mutant
element at state si, action ai is rewarded by 1/mutants(si),
where mutants(si) is the number of newly appeared action-
able elements in si. This reward value is inversely proportional
to the number of mutants in si. If the number of mutants in
si is large, a small value will be given to ai.

To guide WebQT to generate test cases with diversity, we
define the following reward indicators:

(3) rfreq: this reward based on the execution frequency
of transition (si−1, ai, si). If transition (si−1, ai, si) has been
executed many times, we assign a small reward rfreq to it,
which is defined as:

rfreq =
1√
Ni

(5)

where Ni is the execution number of transition
(si−1, ai, si).

(4) rexplore: the degree of exploration of state si. After
execution of action ai, the web application transits to state
si. If state si has a large portion of valid actions that have not
been executed, action ai contributes to state exploration and
we reward it by rexplore, which is defined as:

rexplore =
ni
mi

(6)

where mi and ni denotes the number of executable actions
at state si+1 and the number of actions that have not been
executed at state si, respectively.

Reward function. Based on reward indicators, we define a
reward function ri(ai) as:

ri(ai) =

{
penalty if ext(si) or si = si−1,
r′i(ai) otherwise. (7)

If the web application transits to external link (denoted as
ext(si)) or state si is same with state si−1 (denoted as si =
si−1), then we assign a negative reward for such a transition,
i.e., penalty < 0. Otherwise, we assign a positive reward
r′(as) calculated by:

r′i(ai) = wloc ∗ rloc + wattention ∗ rattention
wfreq ∗ rfreq + wexplore ∗ rexplore

(8)

where wloc > 0, wattention > 0, wfreq > 0 and wexplore >
0 are weights, which are determined by several tests in the
experiment.

E. Reinforcement Learning Agent

In this section, we illustrate how our approach explores state
space, as shown in Algorithm 1. Given a target web application
env, we first retrieve the URL of its homepage, i.e., url (Line
1) and initialize the set of test cases T , policy π and state
space S (Line 2). WebQT runs N episodes to train policy π.
At the beginning of each episode, the target web application
is reset by visiting its homepage page p0 via url (Line 4).
WebQT extracts state and executable actions from web page
p0 (Line 5).

WebQT is allowed to try M steps to generate action se-
quence as during each episode (Line 7). In each step, WebQT
selects action ai at state si−1 (Line 8). After performing action
ai, the web application is directed to the web page pi (Line
9), from which WebQT extracts state si along with the set of
valid actions actions (Line 10). Then, WebQT updates state
space S by si (Line 11). The reward ri is calculated for action
ai (Line 12). Based on si−1, ai, si and ri, policy π is update
(Line 13). Finally, act ai is added into action sequence acts
(Line 14).

In order to train the policy π, our approach adapts reinforce-
ment learning algorithm Q-Learning [18]. Q-Learning trains

Algorithm 1: State space exploration
Input: env (the target web application)
Hyperparameter: N (the number of episodes), M

(the number of step in each
episode)

Output: T (test cases)
1 get url of target application env;
2 T ← ∅, π ← ∅, S ← ∅;
3 for e← 1; e ≤ N ; e++ do
4 reset(env);
5 s0, actions← extract(p0);
6 as← ∅;
7 for i← 1; i ≤M ; i++ do
8 select action ai at state si−1;
9 pi ← env(ai);

10 si, actions← extract(pi);
11 update S by si;
12 ri ← reward(si−1, ai, si);
13 update π using si−1, ai, si and ri;
14 as.push(ai);
15 end
16 T.push(as);
17 end
18 return T ;

the policy via function Q : S × A → R, where Q(si−1, ai)
estimates how good it is to perform action ai at state si−1.
After state transition from si−1 to si by performing action
ai, reward ri is calculated by Equation 7, and function Q is
updated by:

Q(si−1, ai)← Q(si−1, ai) + α(ri + γQ∗(si, ai+1)−Q(si−1, ai)) (9)

where Q∗(si, ai+1) is the maximum cumulative reward can
be achieved from state si. As we can see in this equation,
future cumulative reward is discounted by factor γ ∈ [0, 1].
α ∈ [0, 1] is the learning rate.

Different from traditional reinforcement learning applica-
tions, the action space of web applications is large, making
it hard to select an action that contributes to state space
exploration. In order to overcome this challenge, we design
following strategies, in addition to reward model.
ε-greedy algorithm. We adapt ε-greedy algorithm to keep

balance between exploration and exploitation. Before selecting
an action at state si−1, WebQT first computes a random value
k ∈ [0, 1]. If k is no less than ε, WebQT makes exploitation:
action with maximum Q value is selected. Otherwise, WebQT
makes exploration: WebQT randomly selects one of valid
actions at state si−1. With the increasing number of episodes, ε
is decaying, WebQT switches from exploration to exploitation,
and action with maximum Q value is more likely to be
selected.

Form-fill actions. Form elements are widely used in web
applications. However, it is difficult for the agent to fill a form.

s0 s1 s2 s3 s4
a1

a3

a2

a4

a5

Fig. 5. An example of state transition, where known and unknown states are
denoted by solid and dotted circles respectively.

According to the work [3], in modern web applications, a web
page contains 76 actions on average. For a form consisted of 5
text boxes, the possibility of randomly finding a correct action
sequence to fill the form is 1/(76)5 = 10−10.

To address above challenge, we identify form-fill actions
on form elements, as discussed in Section III-C. If the agent
selects a form-fill action on form element f , our approach
fills all input elements in the form element f . For example,
in the login page, we fill the username text box and password
text box. In this way, we increase the possibility of finding a
correct action sequence on f .

Local optima. Although we apply ε-greedy algorithm to
keep balance between exploration and exploitation, it is still
challenging for reinforcement learning to achieve effective
exploration. For example, in Figure 5, acton a3 with maximum
Q value is selected at state s2. After execution of acton a3,
state s2 transits to state s3. Similarly, acton a4 with maximum
Q value is selected at state s3, and state s3 transits to state s2.
Next, acton a3 is selected and state transits to s3. We regard
the phenomena, where no new state is explored, as a local
optima.

In order to overcome the problem of local optima, we check
whether the agent is trapped in the local optima before action
selection. Consider the acton sequence as = 〈a1, ..., an〉.
If there is no new state in recent window of size Z (i.e.,
there is no new state among state sn−Z+1, sn−Z+2, ..., sn),
we consider that the agent is strapped in the local optima.

We propose two strategies to make our agent jump out of
local optima. If the state where agent is trapped has more
than one valid action, our approach selects actions from valid
actions except the action with maximum Q value. For example,
in Figure 5, when strapped at state s3, the agent selects action
a5 and transits to new state s4 to escape local optima. Different
from existing work that ends current episode immediately
when trapped in the local optima [8], we find that states (e.g.,
state s4) behind the local optima need to be explored. Stopping
current episode makes it hard to explore states behind local
optima.

Second, if the state where agent is trapped only has one
valid action (i.e., the action with maximum Q value), our
approach ends current episode and search for the transition
with lowest execution times, denoted as smin−1

amin−→ smin.
State smin is the beginning of the new episode. Our intuition
is that, putting WebQT at a different state, which has been
visited much less, can increase the possibility to exploring
diverse states. To achieve this goal, we build a state graph,
whose nodes are states and edges are transitions among states.

Our approach computes a shortest path from state s0 to state
smin on state graph via Dijkstra algorithm [19] and the web
application executes corresponding actions to reach state smin.

IV. EVALUATION

We have implement WebQT based on Node.js and Python
3.7 with more than 20,000 lines of code. In order to demon-
strate our approach, our evaluation answers following research
questions:

• RQ1: How is the exploration ability of WebQT in terms
of code coverage, compared with WebExplor [8], the
state-of-the-art web testing tool based on reinforcement
learning?

• RQ2: How effective is proposed state extraction and
identification method? How effective is proposed reward
function?

• RQ3: How effective is WebQT in testing real-world web
applications?

A. Experiment Setup

Dataset. To answer research question RQ1 and RQ2, we
utilize web applications in existing works [5], [8], [9]. One of
these application, pagekit, cannot be instrumented. Applica-
tions gadael, mean-blog and webogram are not maintained
and cannot be built. We also include two web application
management and management from GitHub. In total, we
perform our evaluation on 7 web application. We instrument
each web application by nyc [20]. To answer RQ3, we
randomly select 11 real-world web applications from top 50
web applications according to [14]. In order to demonstrate
scalability of WebQT, we directly perform WebQT on these
web applications without fine-tuning.

Configuration. To answer research question RQ1, we select
state-of-the-art testing tool WebExplor [8] as baseline, which
has been proved in existing works [8], [9]. We perform
WebQT and WebExplor on each web application five times
and measure average branch and line coverage. To answer re-
search question RQ2, we implement following two baselines:
(a) WebQTse: extract and identify states by URLs and tag
sequences and equipped with other components of WebQT;
(b) WebQTr: replace reward model component of WebQT
with the one of WebExplor. We compare WebQT with above
two baselines and measure line coverage. In all experiment,
we set a time budget for each tool, i.e., 15 minutes. We
set DOM element similarity threshold and state similarity
threshold is 0.8 and 0.85, respectively. Reward weights are
set as follows: wloc = 10, wattention = 50, wfreq = 5 and
wexplore = 5. Hyperparameter M and N is set to 10000
and 100, respectively. Since similarity thresholds and reward
indicator weights are important to our approach, we determine
them by several tests. Hyperparameters are not optimized. In
order to avoid threats introduced by above parameters, these
parameters are set equally in each tool.

TABLE III
CODE COVERAGE RESULT

App Branch coverage Line coverage
E Q E Q

timeoff [21] 13.98% 39.87% 6.54% 48.27%
dimeshift [22] 14.72% 39.17% 18.94% 46.31%
splittypie [23] 7.69% 45.16% 32.95% 64.67%
phoenix [2] 22.37% 69.74% 24.25% 79.10%
hospital [24] - 30.97% - 82.35%
retroboard [25] 22.81% 60.23% 58.19% 83.82%
petclinic [26] 0% 85.00% 41.67% 95.83%
Average 11.65% 52.88% 26.08% 71.48%

B. The Ability of Exploration

The result of coverage comparison between WebExplor and
WebQT is shown in Table III, where column E and Q denotes
WebExplor and WebQT, respectively. Since WebExplor cannot
perform on application hospital, we denote coverage measured
on it as -. As shown in Table III, WebQT performs better
than WebExplor. After running 15 minutes, WebQT achieves
41.23% more branch coverage and 45.4% more line coverage
than WebExplor on average. The results shows WebQT better
exploration ability on web applications, compared with state-
of-the-art testing tool WebExplor.

C. Effectiveness of State Extraction Identification

We demonstrate how effective state extraction and iden-
tification method is by comparing WebQT with WebQTse.
The result is shown in Figure 6, where the x-axis and y-
axis represents the testing time and line coverage, respectively.
Note that, some actions, e.g., clicking ”Sales” that transits
application timeoff from employee-calendar page to team-view
page, can trigger much code and thus causing the sudden
increasing of line coverage in the figure.

As shown in Figure 6, WebQT achieves higher exploration
efficiency than WebQTse (i.e., red line arises faster than blue
line). As discussed in Section II, existing approaches cannot
tolerate redundancy in web applications and causes redundant
states, which degrades exploration efficiency. In addition, in
our evaluation, we find that, with the increasing number of
states, it is possible for state extraction by tag sequences
to incorrectly treat two different states sa and sb as the
same state. This is because only taking tag sequences into
consideration loses too much information of web pages to
identify states. Consequently, at state sb, WebQTse chooses
to perform the action that is executable at state sa but non-
executable at state sb. As a result, WebQTse (blue line)
achieves lower line coverage than WebQT (red line).

D. Effectiveness of Reward Model

We demonstrate how effective reward model is by compar-
ing WebQT with WebQTr. The result is shown in Figure 6.

Compared with WebQTr, our approaches benefits WebQT
in two aspects. First, compared with WebQTr (black line),
WebQT achieves higher exploration efficiency (i.e., red line
arises faster). Second, WebQT achieves higher coverage. For

TABLE IV
EVALUATION ON REAL-WORLD WEB APPLICATIONS

App Client Server Total

www.qq.com 2 3 5
www.tmall.com 4 7 11
www.baidu.com 5 1 6
www.taobao.com 3 1 4
www.sohu.com 1 8 9
www.bing.com 4 1 5
www.amazon.com 8 4 12
www.ebay.com 0 1 1
www.aliexpress.com 1 6 7
www.360.com 6 0 6
www.reddit.com 3 0 3
Total 37 32 69

example, in application phoenix, there is a page transition
sequence: homepage→ my-boards→ board-list→ new-board
→ board→ edit-board-info page. Only visiting edit-board-info
can increase coverage. Any interruption leading to another web
pages during such a transition sequence degrades exploration
efficiency. Since WebQT is prone to accesses to actions that
newly appear in the current page, e.g., clicking edition icon
in board page, it increases the possibility to explore diverse
pages.

E. Scalability

In this section, we demonstrate the scalability of WebQT on
real-world web applications. We perform WebQT on 11 web
applications randomly selected from top 50 web applications
[14] and catch exception message in the console. As a result,
WebQT discovers 1,091 exceptions. We manually inspect these
exceptions and find most of them are duplicate. For example,
when the connection is reset, multiple exceptions is reported.
After filtering duplicate exceptions, we obtain 69 exceptions in
total, as shown in Table IV, where column Client and Server
denotes the number of exceptions found in client and server
side, respectively.

As shown in Table IV, we find exceptions can happen
in both client side and server side. In addition, we reveal
a wide range of exceptions, including net related errors,
resource loading errors, cross-domain errors and JavaScript
errors, which demonstrates the scalability of WebQT.

F. Threats to Validity

Representativeness of our studied web applications. We
select a number of web applications to demonstrate effective-
ness of WebQT in our evaluation. First, these experimental
projects come from real-word web applications. Second, these
applications have been widely used in existing works [5], [8],
[9]. Therefore, we believe our studied web applications are
representative.

Evaluation configuration. Randomness can threat validity
of our evaluation. We alleviate this threat by repeating five
runs for each tool. Another threat is the measurement of our
evaluation. WebQT is a black-box testing approach and we
cannot access to the server-side code. Therefore, we only

(b) dimeshift

(e) hospital (g) petclinic

(d) phoenix

(f) retrosboard

(c) splittypie(a) timeoff

WebQTse

WebQTr
WebQT

WebQTse

WebQTr
WebQT

WebQTse

WebQTr
WebQT

WebQTse

WebQTr
WebQT

WebQTse

WebQTr
WebQT

WebQTse

WebQTr
WebQT

WebQTse

WebQTr
WebQT

Fig. 6. Evaluation of WebQT, Webse and WebQTr regarding code coverage.

collect client-side code coverage, which is a common practice
in existing works [5], [8], [9]. Finally, we only monitor
exception messages and do not take other types of failures
into consideration. Other types of failures detection can be
integrated into WebQT in the future.

State identification. Our approach depends on similarity
thresholds to determine whether two states are same. It is
possible to identify a state as a new state incorrectly, intro-
ducing state redundancy. To alleviate this threat, we optimize
thresholds by several tests. As a result, WebQT still separates
states in much scenarios and thus increasing the efficiency
of state space exploration, as demonstrated in the evaluation.
Moreover, since test cases generated by state-of-the-art tool
WebExplor [8] are less diverse than ours, it is unfair to
compare states identified by these two approaches. Therefore,
we do not conduct such an evaluation.

V. RELATED WORK

Random based test case generation. Random based ap-
proaches [4], [16], [27] analyze candidate actions and ran-
domly execute one of them. Although they have been widely
adopted, they are prone to generate invalid test cases, e.g.,
filling values in buttons. In addition, since they are often in-
terrupted by the randomly selected action, they hard to explore
states that can only be reached by valid action sequences.

Model based test case generation. Model based ap-
proaches [6], [28]–[30] first dynamically or statically build the
model to depict behaviors of the target web application. Then,
they design strategies to search paths on the model to generate
test cases. For example, SubWeb [6] leverages Page Object
[31] defined by developer to build the navigation model, and
designs a set of genetic operators to generate test inputs
and feasible navigation paths. DIG [28] pre-selects the most
promising candidate test cases based on their diversity from
previously generated test cases. FragGen [30] ranks actions,
and chooses the next state based on the total score of actions
in each state. Model based approaches are also widely applied

on Android applications [7], [32]–[39]. However, model based
approaches are neither complete nor sound.

Reinforcement learning based test case generation. Re-
cently, reinforcement learning is applied to software testing.
For example, at the same time winning the game, Wuji [40]
explores the state space of the game. QTesting [13] leverages
LSTM to divide scenarios with different functionalities and
adopts Q learning algorithm to generate test cases for Android
applications. Similarly, UniRLTest [9] utilizes CNN to identify
states and interactable actions, and adopts DQN to generate
test cases for both web applications and Android applications.
WebExplor [8] generates test cases for web applications, which
identifies states by URL and tag sequences without tolerance
of redundancy. Consequently, it yields the large state space and
degrades the exploration efficiency. In addition, it inefficiently
explores state space only under the guidance of the number
of executions. On the contrary, our approach design a novel
reward model to guide the agent to generate human-like test
cases with high efficiency, as demonstrated by our evaluation.

VI. CONCLUSION

Web applications are increasingly popular and greatly im-
pact our daily life. However, it is challenging to maintain
web applications with high quality. In this paper, we propose
WebQT, an automatic test case generator for web applications
based on reinforcement learning. Specifically, we present a
new state abstraction technique to avoid state redundancy,
and design a novel reward model to encourage reinforcement
learning agent to mimic human behaviors to explore the state
space. We evaluate WebQT on real-world web applications
and experimental results show it outperforms state-of-the-art
tool with higher effectiveness and efficiency.

VII. ACKNOWLEDGE

This work was partially supported by National Natural Sci-
ence Foundation of China U20A6003, China Southern Power
Grid Company Limited under Project 037800KK52220005.

REFERENCES

[1] “Web server survey,” 2022. [Online]. Available: https://news.netcraft.
com/archives/2022/07/28/july-2022-web-server-survey.html

[2] “Phoenix,” 2022. [Online]. Available: https://github.com/matteobiagiola/
FSE19-submission-material-DIG/tree/master/fse2019/phoenix

[3] Y. Li and O. Riva, “Glider: A reinforcement learning approach to
extract UI scripts from websites,” in Proceedings of International ACM
Conference on Research and Development in Information Retrieval
(SIGIR), 2021, pp. 1420–1430.

[4] A. M. andArie van Deursen and D. Roest, “Invariant-based automatic
testing of modern web applications,” IEEE Transactions on Software
Engineering (TSE), vol. 38, no. 1, pp. 35–53, 2011.

[5] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella, “Diversity-based web
test generation,” in Proceedings of Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2019, pp. 142–153.

[6] M. Biagiola, F. Ricca, and P. Tonella, “Search based path and input data
generation for web application testing,” in Proceedings of International
Symposium on Search Based Software Engineering (SSBSE), 2017, pp.
18–32.

[7] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based GUI testing of android apps,” in
Proceedings of Joint Meeting on Foundations of Software Engineering
(ESEC/FSE), 2017, pp. 245–256.

[8] Y. Zheng, Y. Liu, X. Xie, Y. Liu, L. Ma, J. Hao, and Y. Liu, “Automatic
web testing using curiosity-driven reinforcement learning,” in Proceed-
ings of International Conference on Software Engineering (ICSE), 2021,
pp. 423–435.

[9] Z. Zhang, Y. Liu, S. Yu, X. Li, Y. Yun, C. Fang, and Z. Chen, “Unirltest:
Universal platform-independent testing with reinforcement learning via
image understanding,” in Proceedings of International Symposium on
Software Testing and Analysis (ISSTA), 2022, pp. 805–808.

[10] R. Yandrapally, A. Stocco, and A. Mesbah, “Near-duplicate detection in
web app model inference,” in Proceedings of International Conference
on Software Engineering (ICSE)), 2020, pp. 186–197.

[11] A. M. Fard and A. Mesbah, “Feedback-directed exploration of web
applications to derive test models,” in Proceddings of International
Symposium on Softwar Reliability Engineering (ISSRE), 2013, pp. 278–
287.

[12] A. Stocco, M. Leotta, F. Ricca, and P. Tonella, “Clustering-aided page
object generation for web testing,” in Proceedings of International
Conference on Web Engineering (ICWE), 2016, pp. 132–151.

[13] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement
learning based curiosity-driven testing of Android applications,” in Pro-
ceedings of International Symposium on Software Testing and Analysis
(ISSTA), 2020, pp. 153–164.

[14] “Top web sites rank list,” 2022. [Online]. Available: https://www.alexa.
com/topsites

[15] “Jpetstore demo,” January 1, 2023. [Online]. Available: https:
//petstore.octoperf.com/actions/Catalog.action

[16] “Monkey,” 2022. [Online]. Available: https://developer.android.com/
[17] V. I. Levenshtein et al., “Binary codes capable of correcting deletions,

insertions, and reversals,” in Soviet Physics Doklady, vol. 10, no. 8,
1966, pp. 707–710.

[18] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8,
no. 3, pp. 279–292, 1992.

[19] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications.
Macmillan Education UK, 1976.

[20] “Nyc,” 2022. [Online]. Available: https://istanbul.js.org/
[21] “Timeoff-management-application,” 2022. [Online]. Available: https:

//github.com/timeoff-management/timeoff-management-application
[22] “Dimeshift,” 2022. [Online]. Available: https://github.com/

matteobiagiola/FSE19-submission-material-DIG/blob/master/fse2019/
dimeshift/README.md

[23] “Splittypie,” 2022. [Online]. Available: https://github.com/
matteobiagiola/FSE19-submission-material-DIG/tree/master/fse2019/
splittypie

[24] “Hospital-management-nodejs,” 2022. [Online]. Available:
https://github.com/matteobiagiola/FSE19-submission-material-DIG/
blob/master/fse2019/dimeshift/README.md

[25] “Retroboard,” 2022. [Online]. Available: https://github.com/
matteobiagiola/FSE19-submission-material-DIG/tree/master/fse2019/
retroboard

[26] “Petclinic,” 2022. [Online]. Available: https://github.com/
matteobiagiola/FSE19-submission-material-DIG/tree/master/fse2019/
petclinic

[27] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling ajax-based web
applications through dynamic analysis of user interface state changes,”
ACM Transactions on the Web (TWEB), vol. 6, no. 1, pp. 1–30, 2012.

[28] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella, “Diversity-based web
test generation,” in Proceedings of Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2019, pp. 142–153.

[29] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based GUI testing of Android apps,”
in Proceedings of Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2017, pp. 245–256.

[30] R. K. Yandrapally and A. Mesbah, “Fragment-based test generation for
web apps,” IEEE Transactions on Software Engineering (TSE), 2022.

[31] “Page object,” 2022. [Online]. Available: https://martinfowler.com/bliki/
PageObject.html

[32] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.
Memon, “Mobiguitar: Automated model-based testing of mobile apps,”
IEEE Software, vol. 32, no. 5, pp. 53–59, 2014.

[33] B. Yu, L. Ma, and C. Zhang, “Incremental web application testing using
page object,” in Proceedings of IEEE Workshop on Hot Topics in Web
Systems and Technologies (HotWeb), 2015, pp. 1–6.

[34] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. D. Carmine, and
A. M. Memon, “Using GUI ripping for automated testing of android
applications,” in Proceedings of IEEE/ACM International Conference
on Automated Software Engineering (ASE), M. Goedicke, T. Menzies,
and M. Saeki, Eds., 2012, pp. 258–261.

[35] Y.-M. Baek and D.-H. Bae, “Automated model-based android gui
testing using multi-level gui comparison criteria,” in Proceedings of the
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2016, pp. 238–249.

[36] T. Gu, C. Cao, T. Liu, C. Sun, J. Deng, X. Ma, and J. Lü, “Aimdroid:
Activity-insulated multi-level automated testing for android applica-
tions,” in Proceedings of IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2017, pp. 103–114.

[37] D. Lai and J. Rubin, “Goal-driven exploration for android applications,”
in Proceedings of IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2019, pp. 115–127.

[38] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of International Sym-
posium on Software Testing and Analysis (ISSTA), 2016, pp. 94–105.

[39] J. Wang, Y. Jiang, C. Xu, C. Cao, X. Ma, and J. Lu, “Combodroid:
Generating high-quality test inputs for Android apps via use case
combinations,” in Proceedings of International Conference on Software
Engineering (ICSE), 2020, pp. 469–480.

[40] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen,
Y. Chen, and C. Fan, “Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning,” in Proceedings of IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2019, pp. 772–784.

https://news.netcraft.com/archives/2022/07/28/july-2022-web-server-survey.html
https://news.netcraft.com/archives/2022/07/28/july-2022-web-server-survey.html
https://github.com/matteobiagiola/FSE19-submission-material-DIG/tree/master/fse2019/phoenix
https://github.com/matteobiagiola/FSE19-submission-material-DIG/tree/master/fse2019/phoenix
https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://petstore.octoperf.com/actions/Catalog.action
https://petstore.octoperf.com/actions/Catalog.action
https://developer.android.com/
https://istanbul.js.org/
https://github.com/timeoff-management/timeoff-management-application
https://github.com/timeoff-management/timeoff-management-application
https://github.com/matteobiagiola/FSE19-submission-material-DIG/blob/master/fse2019/dimeshift/README.md
https://github.com/matteobiagiola/FSE19-submission-material-DIG/blob/master/fse2019/dimeshift/README.md
https://github.com/matteobiagiola/FSE19-submission-material-DIG/blob/master/fse2019/dimeshift/README.md
https://github.com/matteobiagiola/FSE19-submission-material-DIG/tree/master/fse2019/splittypie
https://github.com/matteobiagiola/FSE19-submission-material-DIG/tree/master/fse2019/splittypie
https://github.com/matteobiagiola/FSE19-submission-material-DIG/tree/master/fse2019/splittypie
https://github.com/matteobiagiola/FSE19-submission-material-DIG/blob/master/fse2019/dimeshift/README.md
https://github.com/matteobiagiola/FSE19-submission-material-DIG/blob/master/fse2019/dimeshift/README.md
https://github.com/matteobiagiola/FSE19-submission-material-DIG/tree/master/fse2019/retroboard
https://github.com/matteobiagiola/FSE19-submission-material-DIG/tree/master/fse2019/retroboard
https://github.com/matteobiagiola/FSE19-submission-material-DIG/tree/master/fse2019/retroboard
https://github.com/matteobiagiola/FSE19-submission-material-DIG/tree/master/fse2019/petclinic
https://github.com/matteobiagiola/FSE19-submission-material-DIG/tree/master/fse2019/petclinic
https://github.com/matteobiagiola/FSE19-submission-material-DIG/tree/master/fse2019/petclinic
https://martinfowler.com/bliki/PageObject.html
https://martinfowler.com/bliki/PageObject.html

	Introduction
	Motivation
	Approach
	State Extraction
	State Identification
	Action Extraction
	Reward Model
	Reinforcement Learning Agent

	Evaluation
	Experiment Setup
	The Ability of Exploration
	Effectiveness of State Extraction Identification
	Effectiveness of Reward Model
	Scalability
	Threats to Validity

	Related Work
	Conclusion
	Acknowledge
	References

